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Abstract 

During spring breakup, ice-jam related flooding is a dangerous threat to many 

riverine communities in cold regions. Ice-jam floods can be relatively severe and 

often more damaging than open-water floods since they often occur suddenly and 

are associated with much faster and higher staging. Moreover, various 

geomorphological characteristics can be responsible for severe ice-jam 

formation. Therefore, it is necessary to identify the propensity of a river channel 

to ice-jam formation in order to develop an effective flood mitigation strategy 

that could reduce potential flood damages. Although several geospatial models 

have already been developed for various rivers across Canada, a geospatial model 

precisely focused on the Saint John River das not been developed. The main 

purpose of this work is to introduce an advanced Machine Learning Approach 

(MLA) that has been used to develop a geospatial model based on 

geomorphological parameters (e.g. sinuosity, slopes and depths) and features 

(e.g. islands or sandbars, narrow channels, tributaries, bridge piers). A hydraulic 

model (RIVICE) was used to simulate both solid ice cover slopes and longitudinal 

profiles of riverbed elevations (depths). The remaining geomorphological 

parameters were derived from spatial data using a Geographical Information 

System (GIS) tool. Based on observed ice-jam data, a data-driven machine 

learning model was applied to the aforementioned factors to cluster 

geomorphological parameters. First, the trained model was used to identify the 

most probable ice-jam locations and then the results were applied in the test 

model domain to determine the accuracy of the model.  
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1 Introduction  

Ice jams occur when the amount of floating ice in the river surpasses the channel’s transport 

capacity (Beltaos 1995). The process usually happens in the spring when the river ice cover begins 

to break up. This breakup and eventual ice-out take place as a result of several hydro-

meteorological processes, including a rise in air temperature above zero degrees which melts ice 

in the stream, and precipitation and snowmelt that increase the overall runoff, leading to rises in 

river water levels. These result in hydraulic forces acting on the ice, leading to the dislodgment of 

ice covers from the river banks. Spring breakup is often accompanied by ice-jam formation, 

however; mid-winter thaws and rain-on-snow events can also break the winter ice cover and create 

mid-winter ice jams (Beltaos, 2003).  

 

Ice-jam floods can be more devastating than open-water floods as they are difficult to predict. Ice-

jam related floods are a key concern of many riverine communities and government and non-

government agencies in Canada as they can result in human casualties and millions of dollars in 

property damages (Beltaos, 2003; Hicks, 2009). They also significantly impact aquatic 

environments since they can disturb aquatic habitats and destroy spawning locations of aquatic 

animals. However, ice-jam floods can also be necessary to replenish wetlands areas with river 

water and sediments in many inland deltas in Canada (Prowse et al. 2007). Therefore, identifying 

ice-jam locations is one of the prerequisites for developing ice-jam flood mitigation strategies 

(Kovachis et al. 2017). Several geospatial models have already been developed for various rivers 

across Canada (Gauthier et al. 2020) but a geospatial model precisely focused on the Saint John 

River in North America has not yet been developed.  

  

The main goal of this study is to develop a preliminary geospatial model to identify potential ice-

jam locations along the Saint John River by exploring the influence of geomorphological 

parameters and features of the river. The specific objectives are: i) to introduce a simple machine 

learning tool to cluster geomorphological parameters along the upper part of the Saint John River, 

ii) to identify the probable ice-jam locations along the river and iii) to evaluate the impact of 

geomorphological parameters and features on ice jamming. 

 

2 Methodology  

2.1 Background  

Geomorphological factors have a strong link to ice-jam occurrences and locations. Kalinin (2008) 

identified six geomorphological features of the river (e.g. islands, bridges, sharp bends, narrow 

meander loops, tributaries, and narrowing river sections) that can strongly influence ice-jam 

formation. Based on the geomorphology, several studies have focused on geospatial modelling to 

determine the predisposition of particular river reaches to ice jamming (De Munk et al., 2011, 

2017; Lindenschmidt and Das, 2015; Lindenschmidt and Chun, 2014).  

 

A geospatial model is usually based on the assumption that geomorphological characteristics can 

control the ice-jam occurrences along rivers. Therefore, the statistical correlation between these 

geomorphological factors and ice jamming locations can be estimated and presented by developing 

a geospatial model.  



2.2 Study Site  

The study site focuses on the Saint John River between Dickey and Grand Falls, a river length of 

approximately 157 km (Figure 1). It is one of the largest rivers in Atlantic Canada and historically 

prone to ice-jam formation due to its geomorphological characteristics. Almost 70% of the total 

flood damages in the province of New Brunswick are attributed to ice-jam flooding along the Saint 

John River (Humes and Dublin, 1988). The river from Dickey to Grand Falls is relatively shallow 

with occasional islands and a series of rapids. The upper part of the study site from Dickey to 

Edmundston is steeper than the lower part of the river stretch from Edmundston to Grand Falls.  

 

The study reach was divided into two stretches to develop a geospatial model. The stretch from 

Dickey to Edmundston was taken as a training domain and the stretch from Edmundston to Grand 

Falls was selected to test the model (Figure 1).  

 

 
Figure 1: The Saint John River from Dickey to Grand Falls indicating the stretch of the training 

and test domains. 

 

2.3 Geospatialisation of the selected parameters  

A river polygon shapefile was created to develop a geospatial model using GIS software (ArcGIS). 

The geospatialization of the physical characteristics of the river was placed into a machine-learning 

algorithm to identify the cluster of various geomorphological features that had the most influence 



on ice-jam formation. To derive various geomorphological variables, a centerline was constructed 

along the river to create stationary points at 100 metre intervals. Then, a parameter value was 

calculated for each stationary point. The river width was determined at each point by creating 

bank-to-bank transects (Figure 2). 

 

 

 

 
                                                   

Figure 2: Extraction of the channel width from the river shapefile using the GIS tool. 

 

 

For river sinuosity, a 200×200 m moving window at each 100 m segment was selected to capture 

the channel bend. The 200 m window was moved along each centerline point to calculate the 

channel sinuosity using: 

Sinuosity =
actual flow path

shortest path length
 

 

 

 
Figure 3: The estimation of the channel sinuosity. 

 

River islands and bridge piers have a great influence on ice-jam formation. Since both of these 

features could split river channels into multiple sub-channels, they were incorporated using a 

shedding parameter index. For example, if an island splits a river channel into two sub-channels, 

the shedding factor was noted as 2 and if there was no island or bridge and the river channel was 

not divided, the shedding parameter index was marked as 1 (Figure 4).  



 

 
Figure 4: Indexing the shedding parameter (island and bridge) along the river channel             

(photo taken by Karl-Erich Lindenschmidt, 4 December 2009) 

 

Tributaries of a river can be a significant influential factor for ice-jam formation since they may 

contribute additional flow and broken ice at the confluence to form severe ice jams along the river 

during spring breakup. The tributary index was marked as 0 for no tributary and 1 for the existence 

of a tributary along the river (Figure 5). 

 

 
Figure 5: Allocating the tributary index. 
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A sudden drop in riverbed slope accelerates the tendency of consolidated ice covers to form  jams, 

especially when the bed slope changes from steep to mild. For this particular model, river slope 

was estimated from the water profile with a solid ice cover surface simulated with the hydraulic 

model, RIVICE, which also provided interpolated maximum depths at 100 m intervals along the 

river (Figure 6). The solid ice cover was simulated using an average flow during the breakup.  

 

 
Figure 6: Simulated solid ice cover and riverbed elevation (thalweg) using the RIVICE model 

along the Saint John River. 

 

2.4 K -means clustering algorithm 

 

Once all the geospatial parameters were determined at centerline points, the dataset was divided 

into 2 subsets: the training set containing the data from Dickey to Edmundston and the test set 

containing the rest of the dataset from Edmundston to Grand Falls. Then, a simple machine 

learning tool was applied to both of the datasets to cluster the parameters using scikit-learn, a free 

machine learning library for the Python programming language. From this library, K-means 

clustering was used to analyze each parameter and identify the ice-jam predisposition index based 

on historical ice-jam locations. K-means clustering is one of the simplest and most popular 

unsupervised machine-learning algorithms that classify the dataset into K pre-defined distinct non-

overlapping clusters (subgroups). The goal of the K-means clustering algorithm is to find clusters 

in the given input dataset, where K denotes the number of clusters, which is determined using the 

elbow method. The elbow method is a heuristic approach to calculating distortion score, the sum 

of square distances between each data point and its designated centroid.  

 



2.5 Historical ice-jam locations and frequency 

Historical ice-jam locations and frequencies are necessary to validate the geospatial model. Once 

we developed the preliminary model, the ice-jam predisposition index (e.g. high, medium and low) 

was identified based on these historical data. The historical ice-jam locations and their frequencies 

are available from the New Brunswick Department of Environment and Local Government (Mioc 

et al., 2014).  

 

3 Results and validation 

A K-means clustering algorithm was applied to estimate the optimal number of geomorphological 

clusters along the training stretch of the Saint John River from Dickey to Edmundston using the 

elbow method. Figure 7 demonstrates the elbow curve for the training dataset. The curve reaches 

an optimum minimum value at cluster 5, as there is no significant change in distortion score after 

this cluster number. Therefore, a total of five clusters was chosen to be optimal for this stretch.   

 

 
 

Figure 7 The elbow curve for the training dataset to select the number of optimum clusters. 

 

Figure 8 illustrates the training model and the ice-jam predisposition indices of the different 

geomorphological clusters along the Saint John River from Dickey to Edmundston. Based on the 

historical ice-jam observation records, the distribution of clusters 1 and 4, coloured in yellow and 

purple, respectively, are the most susceptible to ice jams along this training stretch. Therefore, they 

were marked with a high ice-jam predisposition index for the river. Relatively fewer ice jams were 

found in clusters 0 and 3, coloured blue and red respectively, and they were designated with 

medium and low predisposition indices, respectively.  

 



Figure 9 illustrates a simple analysis of the characteristics of different clusters based on normalized 

mean values of the geomorphological features. The result shows that the locations with clusters 1 

and 4, where most of the historical ice jams were formed, are areas that are relatively narrow and 

shallow. Moreover, the locations of cluster 4 are also highly sinuous compared to the other clusters. 

The locations with clusters 0 and 3, where fewer ice jams occurred in the past, consisted of 

moderately narrow channels with quite a number of shedding indices. Although cluster 2 has a 

high number of shedding indices and tributaries, these locations are very deep and wide. Therefore, 

in these locations, the probability of ice-jam formation is very low. 

 

Although a clustering approach equally combines and correlates all the geomorphological 

parameters and features to classify the river stretches, specific parameters or features may have 

large impacts on the ice-jam predisposition indices. For example, cluster 4 (high ice-jam 

predisposition index) combines the relatively narrow, shallow and highly sinuous river reaches, 

which are historically the most probable ice-jam formation locations (Figure 9). However, the 

same cluster 4 also combines relatively steeper reaches with fewer islands and tributaries leading 

to a  lesser propensity for ice-jam formation. Therefore, three parameters (narrow, shallow and 

highly sinuous river reaches) play key roles in forming high ice-jam predisposition clusters.  

 

 
 

Figure 8 Training model domain along the Saint John River from Dickey to Edmundston. 

 

Figure 10 illustrates the test model domain and its ice-jam predisposition indices. In this model 

domain, most of the historical ice jams occurred either in the yellow or purple clusters which were 

marked as high predisposition ice-jam locations in the training domain. Therefore, the model 

provides an accurate means of identifying the high predisposition locations along the study site. 

The accuracy of the test model was estimated to be 93%, as the model gave a false negative 

prediction for only 1 event out of 16 historical ice-jam events. Though the current model provides 

a high level of accuracy, it needs to be validated on other rivers with a larger number of 

observations. 



 
Figure 9 Geomorphological characteristics of the different clusters in the geospatial model. 

 

 

 
 

Figure 10 Test domain of the geospatial model along the Saint John River from Edmundston to 

Grand Falls. 

 

4. Conclusion and Future Direction  

A preliminary geospatial model based on various geomorphological parameters and features along 

the Saint John River was developed using the K-means clustering technique. The geospatial model 

is able to identify probable ice-jam locations along the river. Similar to previous studies, it is also 

notable that various common geomorphological parameters, such as narrow and sinuous channels 

with a relatively milder slope and the existence of islands, are conducive for most of the ice-jam 

formation. 

 



Although the current geospatial model is able to identify the most potential locations of ice jams 

along the Saint John River from Dickey to Grand Falls, it is necessary to improve its capability to 

identify the real-time ice-jam locations for a given breakup season. To carry this out, hydraulic 

and river ice parameters can be incorporated into the model. Moreover, this study shows the 

potential of using a hydraulic model to develop a geospatial model by incorporating two 

parameters from the RIVICE hydrodynamic model. The future research goal is to incorporate 

many other river ice parameters (e.g. ice cover types, flow, velocity) to dynamically predict high 

propensity ice-jam locations in real-time. 
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