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Ice jams can cause severe flooding along many rivers in cold regions. Ice-jam-

associated flooding can harm human and natural systems, such as damage to 

infrastructure, houses, and navigation systems and fatal to inhabitants. Predicting 

the occurrence and severity of ice jam floods is vital for mitigating their impacts. 

In recent years, machine learning has been used in river ice research, and these 

models have shown promising results in predicting trends, breakup and freeze-up 

timing. However, there are still challenges associated with using a machine 

learning approach for ice jam flood prediction, such as the limited availability of 

historical data and the difficulty in accounting complex and dynamic nature of 

ice jam formation. In this study, we tried to address these challenges and 

developed a machine learning-based ice-jam flood prediction model. A stochastic 

framework was applied to generate thousands of probable ice-jam scenarios to 

generate a machine-learning modelling data set. In this stochastic framework, a 

river ice hydrodynamic model, RIVICE, was embedded into a Monte-Carlo 

Analysis (MOCA) framework to generate thousands of river ice scenarios. The 

simulated parameter set and associated backwater level elevation outputs were 

then used to develop a machine-learning prediction model. The study presented 

the potential of using stochastic outcomes to develop a machine-learning model 

and improved the capability of ice-jam flood prediction approaches for the ice-

jam vulnerable communities. The Athabasca River, Canada, at Fort McMurray 

was used as a test site to develop this machine learning prediction framework.      
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1. Introduction 

River ice hydraulic models have been increasingly used to predict ice-jam flood forecasting 

(Huokuna et al. 2021; Lindenschmidt et al., 2020; Lindenschmidt et al. 2021). These models often 

require a high level of expertise and users, extensive input parameters, and high computational 

costs. Hence limiting their application in ice-jam flood forecasting and management. On the other 

hand, advanced machine learning (ML) models need a low level of expertise and provide a fast 

solution to a forecasting problem.   

 

The ML models can recognize the complex pattern and correlations between hydrological inputs 

and associated outputs without explicitly describing the underlying multifaceted hydraulic 

mechanisms and processes. These models can be trained using a collection of a large and diverse 

dataset that includes historical observation, records, and characteristics to predict ice-jam 

conditions (Mosavi et al. 2018). In recent times, many ML models have been developed and 

successfully applied for predicting various ice-jam conditions, such as ice-jam backwater level, 

breakup dates, and climate change impacts.   

 

One of the biggest challenges of developing a ML model is that it requires many observations to 

recognize an accurate pattern and trends of predictors and hydrological responses. However, the 

dataset related to river ice events is often short and challenging to collect, particularly in remote 

areas and extreme weather conditions. Moreover, ice-jam formation can cause damage to the 

hydrometric gauge stations, and the equipment is often inoperable to collect data; thus, important 

data records can be lost from the dataset (Kovachis et al. 2017). These limitations can be resolved 

by simulating ice-jam events by applying a stochastic modelling (SM) framework (Lindenschmidt 

et al. 2019) using a river ice hydraulic model. An SM framework to simulate hundreds of ice-jam 

scenarios has been applied in many rivers used in this study to generate many training sets for the 

ML model.  

 

This study applied the SM framework to generate hundreds of ice-jam events. The parameter set 

and simulated output from the SM framework were used for training and validating the model. 

The main purpose of this study is to extend the SM framework using a ML algorithm to predict 

ice-jam flooding. The specific objectives are to (1) introduce a strategy to apply modelling results 

to develop a ML model; (2) assess the effectiveness of the use of simulated results in the ML 

model, and (2) improve the prediction capability of the ice-jam flooding. 

2. Study area 

The Athabasca River (Figure 1) is one of the major rivers in Alberta, Canada, which originates at 

the Columbia Icefield in the Canadian Rockies. The river flows approximately 1538 km before 

draining into Lake Athabasca. Numerous islands, sandbars, a series of rapids and abrupt changes 

in river slopes characterize the geomorphological settings of the river.  

 

The town of Fort McMurray lies in the northeastern region of Alberta, and the town’s downtown 

area is located at the confluence of the Athabasca and Clearwater rivers. The site is very vulnerable 

to ice-jam flooding, as the ice jams along the Athabasca River significantly impact the flow and 

rise in backwater levels along the Clearwater River channel to flood the low-lying areas. Over the 

years, Fort McMurray has experienced devastating ice jam flooding events that have caused 



widespread damage to infrastructure, homes, and the local community. Historically, severe ice jam 

events were recorded in 1977, 1978, 1979, 1997, and 2020. 

 

\ 

Figure 1 Model domain along the Athabasca River at Fort McMurray 

3. Stochastic Modelling Approach 

The calibrated hydraulic model, RIVICE, was embedded into a stochastic method to simulate 

thousands of ice-jam scenarios along the model domain. RIVICE is a one-dimensional river ice 

hydrodynamic model to simulate various river ice processes, including frazil ice generation, intact 

ice cover hydraulics and ice-jam formation. The model requires various river ice and hydraulic 

parameters and boundary conditions as inputs to simulate ice-jam processes. The parameters 

include the porosity of the ice-cover PC and rubble ice PS, the thickness of the ice-cover front FT, 

the thickness of the intact ice-cover h and ice floes ST, the roughness coefficient of the ice n8 and 

riverbed nb, the friction between the ice cover and the riverbanks K1 and the stability of the ice-

jam through its thickening K2, and the ice erosional threshold velocity ver, and deposition velocity 

vd. The boundary condition inputs are the incoming volume rate of ice Vice, upstream discharge Q, 

and toe of ice-jam locations x (Figure 2).    

 

The SM approach was implemented using a Monte-Carlo Analysis (MOCA) framework, where 

frequency distributions of parameter and boundary conditions values are determined from 

observed, calibrated and previously attained data. Upstream flow frequency distributions were 

estimated using observed flows during ice-jam events. A relationship was established between Vice 

and Q data to determine the incoming volume rate of ice (see Lindenschmidt, 2023 for details). 

The ice jam toe locations were derived from a uniform distribution based on historical ice-jam 

information. The values for the parameters were randomly selected from a uniform distribution. 



The range of these distributions was determined through calibration using multiple ice-jam events, 

as conducted by Rokaya and Lindenschmidt (2020). After extracting the parameter and boundary 

condition values from each of their corresponding distributions and functions, the simulations were 

carried out to generate thousands of ice-jam scenarios. 

 

 
Figure 2 Stochastic approach and parameters and boundary conditions used to simulate river ice 

processes in RIVICE hydrodynamic model. 

4. Machine Learning Approach 

A decision tree regression (DTR) algorithm was applied to predict ice-jam water level elevation 

using stochastic model variable sets and results. The DTR is a supervised learning algorithm which 

creates a tree-like model by splitting the data based on the feature values (Figure 3). To classify 

data instances, the model follows a path starting from the root of the tree and ending at a leaf node. 

At each node, a test is performed on a particular attribute, with the branches representing the 

possible outcomes of the test. The leaf nodes provide the predicted group. 

 

 



 

Figure 3: Schematic diagram of the decision tree regression approach. 

 

The input sets from the stochastic approach were refined based on the observed data to select the 

training and test feature sets for the DTR algorithm. A threshold envelope was developed using 

the relationship between flows and water level elevation at the hydrometric gauge station 

downstream of Fort McMurray during ice-jam events (Figure 4). The envelope was then used to 

select the input feature set for training and testing the model. The parameter set that produced the 

results outside of this envelope was considered an outlier and removed from the machine-learning 

model input features. 

 

 
Figure 4: Relationship between ice-affected water level elevation and discharge data recorded at 

the hydrometric gauge station downstream of Fort McMurray during ice-jam events. The overall 

approach of the ML model is illustrated in Figure 5. The stochastic model was applied to produce 

hundreds of ice jam scenarios and associated backwater level profiles along the model domain. 

Then backwater level at the confluence of the Athabasca and Clearwater rivers was extracted to 

create an input dataset for the machine-learning model. The DTR model was then applied to train 

the model for the prediction of the ice-jam associated backwater level at the same location. 

 

 
 



Figure 5: The overall approach of the machine learning model. 

4. Result and Discussion 

 

The stochastic model framework was extended to a machine-learning model to predict backwater 

level elevation in the vicinity of Fort McMurray at the confluence of the Athabasca and Clearwater 

rivers. A total of 6500 ice-jam simulated scenarios were used to develop the machine-learning 

model. The model was trained and tested by splitting the dataset into two groups. First, seventy 

percent of the data was used for model training, and the rest of the data was used for testing. The 

accuracy of the test model was estimated to be R2 = 0.91 and RMSE = 0.229 m (Table 1).  

 

Table 1 Performance statistics of the model during training and testing periods. 

 

Prediction R2 RMSE (m) 

Test set 0.91 0.229 

Validation set 0.90 0.565 

 

A new stochastic dataset was used to validate the model results. The result also produces a high 

accuracy with R2 = 0.9 and RMSE = 0.565 m. RMSE values in the validated model are relatively 

higher only a small number of the stochastic dataset was applied to validate the model. The result 

shows that the model successfully predicted the backwater level elevation for most of the ice-jam 

scenarios (Figure 6). This result can be very helpful in assessing the pattern of the stochastic 

parameter set before applying the framework. Since a ML prediction model requires a large 

number of data, the SM approach has the capability to produce thousands of ice-jam scenarios that 

can be used to develop a prediction model.  

 

Although the ML model was able to predict most of the ice-jam backwater levels with reasonable 

accuracy, some of the high backwater level elevations were underestimated (Figure 6). Since the 

ML model requires a large number of datasets to learn and predict precise values, the number of 

extreme ice-jam events in the training dataset was relatively low, limiting the accurate prediction 

of these extreme ice-jam water level elevations. The SM approach can help to overcome this 

limitation by simulating large numbers of ice-jam events and supplementing small datasets to train 

the ML model. 



 
 

Figure 6: Machine learning model vs stochastic model outputs. 

 

5. Conclusion 

The SM output was successfully applied to develop a ML model to predict ice-jam backwater level 

elevations along the Athabasca River at Fort McMurray. This ML model is simple and easier to 

execute; therefore, it can be used as a pre-assessment tool for selecting the MOCA parameter set 

for the ice-jam stochastic framework. It could remove any unrealistic parameter set that can be 

generated during random variable selection based on the preliminary result of the backwater level 

elevation of a particular location. 

 

Future work will be focused on identifying the most important parameters and boundary conditions 

to predict the ice-jam-associated backwater level elevation using a sensitivity analysis. The 

sensitivity analysis can also help to reduce the number of input variables for the ML model and 

increase the performance accuracy of the model. Moreover, ML model output will be tested using 

observed flood hazard data, such as predicting the backwater level for a specific return period. 
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