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This investigation was carried out to improve the identification of potential ice 

jams using satellite imagery for Natural Resources Canada’s Emergency 

Geomatics Services (EGS) group. The study site comprised the Athabasca River 

around the town of Fort McMurray during the breakup period. Satellite imagery 

used included RADARSAT-2 Fine and Standard Beam data collected in 2014 

and 2015. Field observations for algorithm training and validation were supplied 

by Alberta Environment and Parks in the form of river ice observation reports 

and aerial photography. Predictor variables for input to the classification included 

speckle-filtered HH and HV backscatter, grey level co-occurrence matrix 

(GLCM) mean and entropy texture measures, and incidence angles. Dedicated 

datasets for classifier training and validation were collected throughout the study 

areas. The classification of river ice types was carried out using decision tree 

analysis (DTA), with separate decision trees developed for different 

combinations of predictor variables. The best result, with an overall accuracy of 

95%, was obtained if backscatter, texture and incidence angle information were 

used in concert. The fully automated execution, the ability to generate products 

from imagery acquired at low incidence angles and the observed classification 

accuracy indicate significant operational potential for the RIACT algorithm.  
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1. Introduction 

Floods account for the greatest number of hydrological and meteorological natural disaster events 

in Canada, and for most Canadian rivers the annual peak water levels are due to ice jams 

(Thistlethwaite and Feltmate, 2013; Government of Canada 2009). The formation and decay of 

river ice covers is a highly complex process controlled largely by flow characteristics, temperature 

and precipitation (Weber et al., 2003). The severity and economic impact of floods related to ice 

jams is exacerbated by the danger of post-flooding freeze-up. 

 

Key parameters required to assess the danger of flooding due to ice jams include location, extent 

and structure of the ice field. However, a systematic determination of these parameters is difficult 

to achieve over large areas using conventional, field-based and aerial surveillance methods 

(Beltaos and Burrell, 2015). In remote and inaccessible areas, frequent surveillance can be cost 

prohibitive. Under these conditions, Earth Observation (EO) has emerged as a promising tool to 

collect information on river ice development over large areas repeatedly and consistently 

throughout the ice season. Satellite Synthetic Aperture Radar (SAR) imagery in particular has been 

shown to yield cost-effective information regarding ice type on medium and large rivers within an 

operational context (Weber et al., 2003; Tracy and Daly, 2003; Pelletier et al., 2003; Puestow et 

al., 2004; Pelletier et al., 2005; Mermoz et al., 2009; Khan and Puestow, 2010; Gauthier et al., 

2010; Jasek et al., 2013; Gauthier et al., 2015; Khan and Puestow, 2015; Deschamps et al., 2015). 

 

The radar response of river ice covers is dominated by surface and volume scattering (Pelletier et 

al., 2005; Unterschultz et al., 2009; Gherboudj et al., 2010).  Surface scatter is a result of the 

interaction between the radar signal and an interface at which there is a change in dielectric 

constant. Smooth surfaces usually result in specular reflection, directing most of the energy away 

from the sensor in a single direction. Rough surfaces, on the other hand, tend to cause diffuse 

scattering, reflecting the energy nearly uniformly in all directions and directing more radiation 

back toward the sensor. Rougher surfaces therefore tend to generate a greater amount of surface 

scatter. 

 

In the case of volume scattering, the radiation penetrates into the ice cover and the radar signal is 

scattered by dielectric discontinuities within the medium, such as air bubbles, liquid water pockets 

and particles. Inhomogeneous ice covers typically show larger backscatter coefficients than more 

uniform ice covers. Volume scattering requires the ice to be dry with little liquid water content. If 

the ice is wet, surface scattering is the dominant scattering mechanism.  

 

C-CORE has been providing satellite-based river ice monitoring services since 2004 for rivers in 

Canada, the United States and Russia (Puestow et al., 2004; Pryse-Phillips et al., 2009; Khan and 

Puestow 2010; Khan and Puestow 2015). Emphasizing operational monitoring and the provision 

of tactical information in near real-time (NRT), the generation of ice information products relies 

on a semi-automated analysis framework that integrates satellite and in-situ observations 

(C-CORE, 2012). This process is applied throughout the ice season from ice formation to breakup.  

 

Russell et al., (2009) demonstrated the utility of HH-HV dual-pol SAR imagery in automated river 

ice classification. Using ENVISAT imagery collected from 2005-2008, study areas included the 

Athabasca, Saint John, Exploits Rivers in Canada, as well as the Yenisei River in Russia. Field 

data included annotated maps, aerial and field photographs, aerial video and ice observer reports. 



EO data and field data were correlated by date and location to identify suitable training sites. A 

quadratic discriminant classifier algorithm was developed based on image backscatter values and 

texture measures derived from the Grey Level Co-occurrence Matrix (GLCM). A sequential 

forward selection algorithm was employed to reduce the set of variables used in the classification. 

The results indicate the potential for improved ice class separability by incorporating both the HV 

channel and GLCM texture measures, confirming the utility of dual polarized SAR imagery for 

improved ice type discrimination.  

 

Van der Sanden and Deschamps (2014) and Deschamps et al., (2015) describe an automated 

satellite-based approach for the classification of breaking river ice cover implemented as the Ice 

Breakup Classification (IceBC). Exploiting the sensitivity of SAR to differences in the roughness 

of river ice covers during breakup, the process uses C-band SAR, HH single-pol images as input. 

In order to increase the discrimination of ice and water, only incidence angles greater than 36° are 

considered. The algorithm returns the principal classes of sheet ice (smooth textures), rubble ice 

(rough textures) and water, whereby three sub-categories are defined for both sheet and rubble ice. 

Although the process is largely automated, additional interpretation by subject matter experts is 

required to resolve potential ambiguities (e.g., similar SAR signatures for moving and stationary 

ice, presence of water or wet snow on ice).  

 

This study was carried out within a larger project aiming to develop improved tools for flood 

hazard assessment by the Emergency Geomatics Service (EGS) group of Natural Resources 

Canada (NRCan). It was the goal of this research to improve the identification of potential ice jams 

using satellite imagery. With an emphasis on the Athabasca River around the town of Fort 

McMurray during the breakup period, the investigation aimed to address the following objectives: 

 

 Evaluate the contribution of the cross-pol channel (i.e. HV) to river ice classification; 

 Evaluate the contribution texture information to river ice classification; 

 Emphasize the separation of ice and water; and 

 Implement an automated classification tool compatible with EGS processes.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Methods 

This investigation focused on the Athabasca River around Fort McMurray as presented in Figure 

1. Originating from the Columbia Ice Field in the Rocky Mountains, the Athabasca River flows 

more than 1200 km north-east to drain into the Peace-Athabasca Delta. Ice-related flooding is a 

recurring concern for Fort McMurray, a major regional administrative and industrial center with 

population of approximately 80,000. An active aerial ice surveillance program is conducted during 

the spring breakup period by Alberta Environment and Parks to monitor ice conditions and assess 

flood risk. 

 

 
 

Figure 1. Study area with numbered river sections (descending in downstream direction) 

 

This study used RADARSAT-2 satellite SAR imagery collected in 2014 and 2015 as presented in 

Table 1. All satellite data had been previously collected and made available to the project by 

NRCan. All images used were acquired during the spring breakup phase. In addition, air 

temperature and wind speed observations coinciding with the satellite image acquisition were 

provided by NRCan. 

 

 

 



Table 1. Characteristics of RADARSAT-2 imagery used in the study 

 

Beam Mode 
Incidence 

Angle [⁰] 
Polarization 

Acquisition 

Date 
Orbit 

Local 

Time 

Standard 8 48.5 – 52.1 HH, HV April 17, 2014 Ascending 18:29 

Standard 7 44.4 – 49.3 HH, HV April 17, 2014 Descending 06:33 

Wide Fine Quad-Pol 16 34.8 – 37.6 HH, HV, VH, VV April 20, 2014 Descending 06:46 

Wide Fine Quad-Pol 20 38.6 – 41.3 HH, HV, VH, VV April 21, 2014 Ascending 18:12 

Wide Fine Quad-Pol 5 22.5 – 26.0 HH, HV, VH, VV April 23, 2014 Descending 06:58 

Wide Fine Quad-Pol 5 22.5 – 26.0 HH, HV, VH, VV April 25, 2014 Ascending 17:56 

Wide Standard Quad-Pol 5 38.6 – 41.3 HH, HV, VH, VV April 27, 2014 Descending 06:42 

Wide Standard Quad-Pol 20 38.6 – 41.3 HH, HV, VH, VV April 16, 2015 Ascending 18:46 

 

A water mask created from LANDSAT imagery and provided by NRCan was used to ensure all 

land areas were removed from the analysis. The water mask was overlaid on the SAR imagery and 

manually corrected for geometric errors where necessary. 

 

Field observations for algorithm training and validation were supplied by Alberta Environment 

and Parks in the form of river ice observation reports and aerial photography. River ice observation 

reports and maps were retrieved from the Alberta Environment and Parks archive of river ice 

observations (http://www.environment.alberta.ca/forecasting/RiverIce/). The difference between 

in-situ and satellite observations ranged from 3 to 8.5 hours. 

 

This investigation focused on the use of dual-pol SAR imagery, specifically the HH co-pol and 

HV cross-pol channels. Accordingly, only HH and HV magnitude information was extracted from 

fully polarimetric RADARSAT-2 imagery as required. In alignment with the IceBC algorithm, 

HH and HV backscatter was expressed as gamma nought (γ0) (van der Sanden and Deschamps, 

2014). 

 

The images were orthorectified using the rational function models and polynomial coefficients 

supplied with the RADARSAT-2 imagery (MDA, 2016). The pixel spacing selected for Fine and 

Standard Beam data was 6.5 and 12.5 meters, respectively. Nearest neighbour resampling was 

carried out to define pixel values in the orthorectified imagery. The HH and HV backscatter images 

were subjected to speckle reduction using gamma maximum a-posteriori filtering (Lopes et al., 

1993). Following the IceBC pre-processing routines, speckle filtering was carried out in two stages 

using varying window sizes and effective number of looks. The speckle-filtered backscatter were 

subsequently converted from power to dB values. 

 

Predictor variables for input to the classification included speckle-filtered HH and HV backscatter 

(γ0), image texture and incidence angles. 

 

Describing the spatial variability of brightness features among neighboring pixels, image texture 

has been used to capture spatial information contained in images (Haralick and Shanmugam 1973). 

A commonly used approach to extract image texture is based on the GLCM. The GLCM is a two-

dimensional (2D) histogram, which evaluates pairs of pixels separated by a given distance across 

a defined direction. Each entry in the matrix corresponds to the frequencies of occurrence of grey 

http://www.environment.alberta.ca/forecasting/RiverIce/


level combinations of pairs of pixels (Haralick et al., 1973; Soh and Tsatsoulis, 1999). Texture 

measures based on the GLCM can be broadly grouped into categories relating to contrast, 

orderliness and descriptive statistics. The texture measures GLCM mean and GLCM entropy were 

used in this investigation based on their documented performance in discriminating between river 

ice classes (Gauthier et al., 2006; Russell et al., 2009).  

 

Incidence angle is a key factor affecting SAR backscatter, whereby similar surfaces show different 

backscatter signatures at different incidence angles. The impact of incidence angle variation can 

be minimized by selecting images acquired with similar incidence angles. However, this generally 

requires that image acquisitions are spaced one repeat cycle apart, which in the case of 

RADARSAT-2 is 24 days. For applications such as river ice monitoring, this is not practical as a 

much higher frequency of temporal coverage is required to capture dynamic ice cover changes. 

Therefore, river ice monitoring relies on the use of imagery acquired at different incidence angles. 

The use of image texture mitigates the impact of incidence angles on backscatter to some degree, 

as texture measures are based on spatial variation of brightness values within a defined 

neighbourhood of pixels. In addition, this investigation used incidence angle as explicit predictor 

variable in an effort to minimize unexplained variance in river ice classes. To this end, the 

incidence angle information contained in the RADARSAT-2 metadata was used to generate image 

channels containing the nominal incidence angle for each pixel.    

 

Samples for use in classifier training and validation were collected as contiguous groups of pixels 

(polygons) located throughout the area of interest (Chen and Stow, 2002). In selecting an 

appropriate size for training and validation polygons, visual interpretation of the RADARSAT-2 

and airborne imagery was carried out to identify the dimensions of small river ice features 

discernable in both satellite and aerial observations.  

 

Nominally square sampling polygons were defined with a side length of 100 meters, resulting in 

polygon sizes of 8 x 8 and 16 x 16 pixels for fine and standard beam imagery, respectively. A 

random sampling scheme was implemented to locate the initial centroid locations for training 

polygons. In order to maximize the probability that pixels in neighboring polygons are independent 

from each other, the distance between polygon centroids was selected to be at least 200 meters. 

The actual shape of training and validation polygons was adjusted locally, where required, to 

ensure the collection of pixels over homogeneous areas. 

 

The location of river sections used to select training and validation data was primarily based on 

areas covered by aerial photographs. In some cases, polygons were defined in areas located beyond 

the actual air photo coverage based on readily interpretable radar signatures and ice surveillance 

reports (e.g. open water and ice jam). Polygons containing training and validation data were 

initially captured as vectors (i.e. shape file format) and subsequently converted to a bitmap mask 

for the extraction of the corresponding pixel values for each predictor variable. Each polygon was 

assigned one of the following ice classes: 

 

 Open water 

 Sheet ice (labelled intact ice in field reports) 

 Rubble ice (labelled ice jams in field reports) 

 



Using the method described above, a total of 663 polygons were collected. The polygons were 

randomly divided into training data (413 polygons, 61938 pixels) and validation data (176 

polygons, 26924 pixels). The following information was recorded for each pixel in each polygon: 

 

 Unique polygon ID 

 Ice type 

 Unfiltered HH and HV backscatter 

 Speckle-filtered HH and HV backscatter 

 HH and HV GLCM Mean and Entropy 

 HH and HV GLCM Entropy 

 Incidence angle 

 Date and time of image acquisition 

 Time difference between image acquisition and field visits 

 

The classification of river ice types was carried out using a decision tree analysis (DTA). DTA 

allows the formulation of relationships between one response (i.e. dependent) variable and several 

predictor (i.e. independent) variables by dividing a data set recursively into smaller, increasingly 

homogeneous portions. The final result constitutes a division of the original data set into mutually 

exclusive and exhaustive sub-sets (Morgan and Sonquist, 1963; Kass, 1980; Breiman et al., 1984; 

Quinlan et al., 1987; Biggs et al., 1991). 

 

Performed for either exploratory analysis or predictive modelling, DTA requires no limiting 

assumptions about data distributions, it allows the simultaneous handling of categorical and 

continuous variables in the same data set, and permits the detection of non-linear interactions 

between variables (Lees and Ritman, 1991); Fabricius and Coetzee, 1992); Dymond and Luckman, 

1994; Costanza and Paccaud, 2004; Chang and Chen, 2005; Crall et al., 2006). These properties 

make DTA ideally suited to problems with limited or no a-priori knowledge about the distribution 

and interaction of parameters in question. 

 

DTA was carried out using the method described by Breiman et al. (1984), implemented as 

recursive partitioning (rpart) in the R statistical computing environment (Therneau and Atkinson, 

2015). The rpart procedure was executed through the Rattle graphical user interface, Version 4.1.3 

(Williams, 2009). At every level of the tree, stepwise splitting is performed by examining each of 

the predictor variables in turn and selecting the predictor resulting in the largest reduction in 

impurity as measured by the Gini index. Separate decision trees were developed for the following 

combinations of predictor variables: 

 

 Scenario 1: HH backscatter; 

 Scenario 2: HH and HV backscatter; 

 Scenario 3: HH and HV backscatter, GLCM Mean and GLCM Entropy; and 

 Scenario 4: HH and HV backscatter, GLCM Mean and GLCM Entropy, incidence angle. 

 

For each scenario, an initial decision tree with a large number (i.e., hundreds) of terminal nodes 

was grown. Parameters reported for each split in the initial tree included complexity (cp), relative 

error as evaluated by the training sample, classification error as evaluated by a 10-fold cross-

validation (xerror), and standard error of the cross-validation risk (xstd). In order to reduce the 



likelihood of overfitting, redundant splits were removed from the initial trees using the xerror and 

cp parameters in a process called pruning. To this end, the minimum value of xerror was identified 

together with the complexity parameter corresponding to xerror + xstd. The tree was subsequently 

re-grown with the resulting cp value. The terminal nodes of each decision tree were interpreted as 

classification rules in the form of conditional “IF…THEN…” statements. An example of 

classification rules derived from DTA and expressed in pseudo-code is presented as follows: 

 

IF HH < -20.14 dB THEN Class = Water 

IF HH >= -20.14 dB and HH < -19.37 dB THEN Class = Water 

IF HH < -18.94 dB and HH >= -19.37 dB THEN Class = Sheet Ice 

IF HH < -11.42 dB and HH >= -18.94 THEN Class = Sheet Ice 

IF HH >= -11.42 dB and HH < -9.902 dB THEN Class = Sheet Ice 

IF HH >=-9.902 dB THEN Class = Rubble Ice 

 

All pre-processing and classification procedures were implemented as a series of python scripts to 

be executed within PCI Geomatica 2015. The classification accuracy was assessed using the 

validation dataset. Confusion matrices were used to estimate overall accuracy as well as omission 

and commission errors (Congalton and Green. 1993). 

3. Results 

For each classification scenario described in Section 2, a separate set of classification rules was 

implemented and evaluated. The corresponding confusion matrices are presented in Table 2 to 

Table 5. Each table summarizes the number of pixels classified as a particular category (rows) 

versus the actual ice type as observed in the validation data set (columns). 

 

Table 2. Classification result – Scenario 1 (HH only) 

 

Accuracy: 79.7% Reference 

Classification 

 Water Sheet Ice Rubble Ice Total 

Water 1951 1023 38 3012 

Sheet Ice  1077 14656 1815 17548 

Rubble Ice 20 1485 4859 6364 

Total 3048 17164 6712 26924 

 

Table 3. Classification result – Scenario 2 (HH, HV) 

 

Accuracy: 84.0% Reference 

Classification 

 Water Sheet Ice Rubble Ice Total 

Water 1823 530 31 2384 

Sheet Ice  1208 15093 968 17269 

Rubble Ice 17 1541 5713 7271 

Total 3048 17164 6712 26924 

 
 
 



Table 4. Classification result – Scenario 3 (HH, HV, Texture) 

 

Accuracy: 86.5% Reference 

Classification 

 Water Sheet Ice Rubble Ice Total 

Water 2229 472 0 2701 

Sheet Ice  819 15212 862 16893 

Rubble Ice 0 1480 5850 7330 

Total 3048 17164 6712 26924 

 

Table 5. Classification result – Scenario 4 (HH, HV, Texture, Incidence Angle) 

 

Accuracy: 94.5% Reference 

Classification 

 Water Sheet Ice Rubble Ice Total 

Water 2612 311 0 2923 

Sheet Ice  430 16585 455 17470 

Rubble Ice 6 268 6257 6531 

Total 3048 17164 6712 26924 

 

The overall accuracy is increasing with an increasing number of predictor variables. Using the HH 

backscatter only, an overall accuracy of 79.7% was achieved, which most of the error related to 

the misclassification of water and sheet ice, as well as sheet ice and rubble ice. Adding HV 

backscatter information increased the overall accuracy to 84%. In this case, the classification error 

was primarily due to the confusion between water and sheet ice. The classification accuracy 

increased incrementally to 86.5% with the addition of GLCM mean and entropy texture measures. 

The largest improvement in this case is related to the differentiation of sheet ice and water. The 

highest accuracy was achieved using all predictor variables in the classification, i.e. HH and HV 

backscatter, texture measures and incidence angle. In this case, an overall classification accuracy 

of 94.5% was observed. The largest classification error was associated with the category water, 

with omission and commission errors of 14.3% and 10.6% respectively. The corresponding errors 

for the sheet and rubble ice classes ranged from 3.4% to 6.8%.  

 

The classification rules corresponding to Scenario 4 were implemented together with all relevant 

pre-processing procedures as the River Ice Automated Classification Tool (RIACT). The 

performance of the RIACT algorithm was qualitatively compared to the IceBC algorithm applied 

to the same RADARSAT-2 scenes. Figure 2 and Figure 3 show examples for Fine and Standard 

quad-pol imagery, together with relevant sections of aerial surveillance data. In the RIACT, water 

is displayed in blue, sheet ice in yellow and rubble ice in red. In the IceBC products, water is 

indicated as dark and light blue, sheet ice as green and yellow, and rubble ice as orange and red. 

The example in Figure 6 shows a river section largely classified as sheet ice in RIACT, with several 

locations of open water. While generally similar, the IceBC product generated for the same area 

shows more open water. The sheet ice cover is characterized by different stages of deterioration. 

 

 



 
 

Figure 2. Comparison of RIACT and IceBC results - April 21 (Wide Fine Quad-Pol 20) 

 

By contrast, the example in Figure 3, acquired several days later in the breakup phase, shows close 

correspondence of the RIACT and IceBC outputs.  

 

 
Figure 3. Comparison of RIACT and IceBC results - April 27 (Wide Standard Quad-Pol 20) 

 

In this case, the different classes are well defined, with a stationary ice jam, intact sheet ice and 

ice-free open water. A major difference between RIACT and IceBC is the ability of the former to 



generate products at low incidence angles. An example is presented in Figure 4, showing good 

correspondence with the available aerial imagery and field reports. 

 

 
 

Figure 4. RIACT product generated for low incidence angle - April 25 (Wide Fine Quad-Pol 5) 

 

Using only HH backscatter as a predictor variable, the RIACT algorithm achieved an overall 

classification accuracy of nearly 80%. This figure is largely due to the correct classification of 

pixels belonging to the sheet ice class, with associated commission and omission errors of 16% 

and 15%, respectively. The corresponding errors for the categories water and rubble ice were much 

higher, ranging from 28% to 36%. In consequence, using HH backscatter only within RIACT is 

not considered a viable option for operational implementation, as operational information needs 

emphasize the correct differentiation between ice and water, as well as the delineation of rubble 

ice as an indicator of potential ice jams.      

 

Adding the cross-pol channel as a second predictor variable increased the overall classification 

accuracy to 84%. However, while an accuracy of nearly 90% is observed for sheet ice, the 

accuracies associated with water and rubble ice remain low, with classification errors ranging from 

21% to 40%. The inclusion of the texture measures GLCM mean and GLCM entropy caused a 

modest increase in overall accuracy to 86.5%. The most notable improvement was observed for 

the category water, with omission and commission errors of 27% and 17%, respectively. However, 

the overall performance is still not considered adequate for operational needs. 

 

By contrast, including incidence angle information in the classification process resulted in a 

marked increase in overall accuracy and decrease in classification errors (3% to 14%). As a result, 

RIACT shows significant operational potential. Of particular interest is the ability of RIACT to 

generate products at low incidence angles. This is in contrast to currently operational procedures 

that do not process imagery acquired at incidence angles of less than 35⁰ due to the increasing 

similarity of ice and water at these angles (C-CORE, 2012; Deschamps et al., 2015). 



 

The qualitative comparison with IceBC shows generally good agreement for the major ice 

categories. In some cases, RIACT appears to underestimate areas covered by water compared to 

IceBC output. This is particularly evident in images acquired early in the breakup period and is 

likely linked to sheet ice cover in various stages of deterioration. Conversely, IceBC is not 

currently able to generate products from imagery acquired at low incidence angles, whereas 

RIACT can generate products at all incidence angle ranges under investigation.   

4. Conclusion and Recommendations 

This investigation successfully developed, implemented and validated a fully automated process 

chain for satellite-based river ice classification. The underlying classification rules were derived 

using decision tree analysis. Using both RADARSAT-2 Fine and Standard Beam imagery, 

separate classification scenarios evaluated the utility of HH and HV backscatter, image texture and 

incidence angle as predictor variables. The best result with an overall accuracy of 95% was 

obtained when all predictors were used in the classification process.   

 

The fully automated execution, the ability to generate products from imagery acquired at low 

incidence angles and the observed classification accuracy indicate significant operational potential 

for the RIACT algorithm. However, the algorithm has been trained and validated for one particular 

location and ice regime. In order to apply RIACT to other rivers across Canada, it will likely be 

necessary to retrain the algorithm using location-specific satellite and in-situ observations. The 

separation of ice and water remains challenging, indicating that other variables may need to be 

included to capture decaying ice covers more accurately. For example physical environmental 

variables such as air temperature, wind speed and precipitation are readily available and could 

easily be included in a tree-based classification approach. 

 

This investigation used a single tree-based algorithm. However, classification strategies employing 

several different algorithms in an ensemble setting to compensate for the limitations of any singly 

classification method are increasingly used in the exploitation of satellite images. Future research 

should therefore consider the adoption of an ensemble approach for river ice classification. Given 

the documented success achieved with decision-tree analysis, a logical extension would be the use 

of random forests to improve robustness and reduce errors. 

 

Previous research on satellite-based river ice classification has demonstrated improved 

classification accuracy for region-based approaches over pixel-based methods. Accordingly, 

future research should consider evaluating the contribution of region-based classification 

strategies.  
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